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a b s t r a c t

In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Lab-
oratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J.
Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic
Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Cho-
pra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in
Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory
program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published:
May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC,
Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Compo-
nents and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data col-
lected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on
nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information
on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated
sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concen-
tration, hold time, down time, maximum stress intensity factor (Kmax), stress intensity range (DKmax), crack
length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map
clusters vectors of information by ‘similarities.’ Vectors of information were formed using the metal com-
position, followed by the environmental conditions used in each experiments, and finally followed by the
crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the
sample is cyclically loaded. Accordingly, one experiment will result in a long vector of data containing
information such as [Fe, wt%], [Cr,wt%], [Temperature, T], [Electrochemicalpotential, ECP], [Kmax], [Conduc-
tivity, k], [CGR], etc. In that long data-vector, CGR is only one component of the vector. To ‘increase’ the
importance of the CGR over the other components of the data-vectors, ‘functional links’ or functions of
the CGR (as powers, logarithms, etc.) are added to each one of the vectors, resulting in longer vectors.
The trained Kohonen map cells adopt‘average’ values from all of the vectors stored in that cell. Accordingly,
each Kohonen cell is ‘represented’ by and ‘average’ vector. The ‘average’ vectors representing each one of
the Kohonen trained cells are topologically arranged on the map surface; i.e. ‘high crack growth rates’ vec-
tors are stored on cells far apart of ‘low crack growth rates’ cells. Each of the parameters forming the vector
can be investigated; maps of the trends of each parameter were drawn and those maps were compared to
the maps of the CGRs. This paper presents the results by means of3-dimensional figures that show the ben-
eficial and detrimental effects that each of the variables considered has on the CGR on austenitic stainless
steel weld heat affected zones in BWR environments and on nickel alloy welds in PWR environments. Data-
mining methodologies (including clustering analysis) are useful to extract information from data. ‘Nuclear
waste’ belongs to a category of subjects that are extremely complicated, mainly because many electro-
chemical and material-related phenomena can occur simultaneously. Stress corrosion cracking can be
present among the corrosion problems faced by nuclear waste storage. The data-mining on ‘the effect of
material composition and environment on the CGRs’ (presented in this paper – in our knowledge used
by first time in the area of nuclear waste) is to be used by the reader as an example of a methodology that
can be adopted for other problems encountered in the nuclear waste industry and for which data are
available.

� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The problem

Thin and long cracks formed under fatigue loading and environ-
mental conditions are unfortunately found in the nuclear industry
and they may represent a threat to the integrity of the nuclear
waste isolation systems. Crack growth rate in nuclear environ-
ments is the result of a combined electrochemical and mechanical
(due to the fatigue load conditions or constant load) effects. There
are three principal regimes that can be recognized when the loga-
rithm of the crack growth rate is plotted versus the electrochemical
potential (ECP). Two of those regimes are dominated by the envi-
ronment; they are characterized by much larger crack growth rates
than if the regime was to be dominated only by the ‘mechanical’
regime. Those three regimes are (1) ‘hydrogen embrittlement’ re-
gime, usually found at more negative ECPs on the curve Log(CGR)
versus ECP; (2) ‘mechanical’ regime at intermediate ECP (the crack
growth rates are the smallest when contrasted with the other two
regimes – there is no dependency on the ECP in that regime); and
(3) ‘environmental’ regime at more positive ECPs (the crack growth
rates are controlled by diffusion of the ions formed inside the crack
(due to the electrochemical crack tip dissolution (oxidation)) and
reacting at the crack mouth or outside of the crack; closing the
electrical circuit needed to maintain charge balance. Depending
on the metal and environment of choice, one ‘regime’ may overrule
the other ‘regime.’ The faster crack growth rates in nuclear reactors
are observed when the ‘environmental’ regime overruns the
‘mechanical’ regime or when the ‘hydrogen embrittlement’ regime
overruns the ‘mechanical’ regime [4]. The boiling water reactor
coolant water chemistry operates such that the ECP is displaced
below a critical value of �0.23Vshe [4]. It has shown in the past
[4] that the crack that appears after many years of operation – in
well-operated nuclear reactors – has an ‘environmental’ regime
that is more important than the ‘mechanical’ regime or the ‘hydro-
gen embrittlement’ regime is more important than ‘mechanical’
regime [5].

1.2. Data

Crack growth rates were collected from tables of data published
in internal reports generated by Argonne National Laboratory [1–3].
Table 1
Stainless steel alloy composition used in this study [1]

Type Heat ID Analysis Ni Si P

304 10285 Vendor 8.40 0.51 0.032
ANL 8.45 0.60 0.015

304L GG top shell ANL 9.05 0.53 0.027
GG bottom shell ANL 8.95 0.55 0.023

Table 2
Chemical composition (wt.%) of Alloy 600 base metal and Inconel 182 and 82 weld metal

Alloy ID (Heat) Analysis C Mn Fe S P

A 600 (NX1310) Vendor 0.07 0.22 7.39 0.002 0.006
ANL 0.07 0.22 7.73 0.001 –

A 600 (NX1933) Vendor 0.08 0.26 9.55 0.003 –
A 182 Spec. 0.10 5.0–9.5 6.0–10.0 0.015 –
A 182 ANL 0.05 6.97 6.82 0.005 0.008
A 182 Double-J ANL 0.04 6.58 6.48 0.005 0.022
A 182 Deep Groove ANL 0.04 7.08 6.82 0.005 0.025
A 82 Spec. 0.10 2.5–3.5 3.0 0.015 –

* Estimated as the balance. Not value was showed in original Table [2].
The data collected were measured on austenitic stainless steels in
BWR environments and on nickel alloys in PWR environments.

Austenitic stainless steel (SS) specimens – neutron irradiated
and not irradiated, and from heat affected zones (HAZ) of type
304, 304L, 316, and 316L under BWR environments – were labora-
tory prepared; the specimens were cut out of HAZ and weld zones
from the Grand Gulf reactor core and from type 304 SS HAZ labo-
ratory-prepared welds. The composition of the alloy SS used is
shown in Table 1.

Also, crack growth tests were completed on an Alloy 600 round
robin specimen and Alloy 182 weld specimen in simulated PWRs
primary water at 320 �C. The CGRs obtained with a trapezoidal
waveform (i.e., a constant load with periodic unload/reload, and
a load ratio R, 0.21 < R < 0.71) were comparable to the average
behavior of Alloy 600 in a PWR environment. The composition of
the Ni-based alloys is shown in Table 2.

Notice that when data were not available, we assumed that the
weight percentile was lower than the detectable value and we set
it at zero. The collected data maximums and minimums of each
one of the variables considered are shown in Table 3 for BWR
and in Table 4 for PWR.

Because the volume of data produced was not very large (a few
hundred experiments were reported all together), the author pro-
ceeded to conduct the data analysis as follows:

(1) BWR conditions, mainly Fe-based alloys.
(2) PWR conditions, mainly Ni-based alloys.
(3) All data were assembled in a single table; data included

measurements of CGR in PWR and BWR conditions, in Fe-
based and Ni-based alloys.

Long vectors were formed (size 30) to represent each experi-
ment performed. Those vectors contained the alloy composition,
mechanical and environmental conditions, and crack growth rates.
However, for a single reactor environment and alloy type, the num-
ber of datum vectors measured was limited (to <100 points); the
results (Kohonen trained map) obtained during the clustering exer-
cise resulted in ‘noise’ and the program warned the user that the
number of examples was too small. Accordingly, in this paper, after
analyzing the Fe alloys in BWR environments and the Ni alloys in
PWRs environments, the author analyzed the data all together
and performed the clustering analysis resulting when all data
S Mn C N Cr Mo O

0.006 1.64 0.058 – 18.25 0.41 –
0.007 1.90 0.070 0.084 18.56 0.51 0.013

0.016 1.84 0.013 0.064 18.23 0.44 0.010
0.008 1.80 0.015 0.067 18.62 0.31 0.014

s [2]

S i Cu Ni Cr Ti Nb Co

0.12 0.05 76.0 15.55 0.24 0.07 0.058
0.18 0.06 75.34 16.39* – – –

0.15 0.10 73.3 15.90 – – –
1.0 0.5 Balance 13.00–17.00 1.0 1.00–2.50 0.12
0.56 0.01 69.22 – – 1.70 –
0.33 0.04 70.6 14.30 0.36 1.13 0.03
0.35 0.03 70.4 13.80 0.3 1.06 0.02
0.5 0.5 Balance 18.00-22.00 0.75 2.00–3.00 0.75



Table 3
Maximum and minimum values of the variables (in BWR environments) considered for training the Kohonen map [1]

C (wt%) Mn (wt%) Fe (wt%) S (wt%) P (wt%) Si (wt%) Cu (wt%) Ni (wt%) Cr (wt%)

Maximum 0.070 1.90 69.791 0.016 0.027 0.6 0 9.05 18.62
Minimum 0.013 1.84 69.543 0.007 0.015 0.53 0 8.45 18.23

Ti (wt%) Nb (wt%) Co (wt%) Mo (wt%) N (wt%) O (wt%)

Maximum 0 0 0 0.51 0.084 0.014
Minimum 0 0 0 0.31 0.064 0.010

Temperature
(�C)

Test time
(h)

Flow rate (cc/
min)

Pt ECP mV SHE at
289 �C

Steel ECP mV SHE at
289 �C

Conductivity
(lS/cm)

[O2]
(ppb)

R, Load
Ratio

Rise time
(s)

Down time
(s)

Maximum 289 1100 140 261 225 0.30 590 1.00 1000.00 12.00
Minimum 289 46 0 �557 �633 0.07 10 0.17 0.25 0.25

Hold time (s) Kmax (MPa m^0.5) DKmax (MPa m^0.5) Allowed Kmax (MPa m^0.5) Crack length (mm (initial 6 mm) Weld Growth rate (m/s)

Maximum 9700 38.6 14 30.5 9.367 1 7.60E�08
Minimum 0 13.0 0 13.1 6.700 0 1.00E�14

Table 4
Maximum and minimum values of the variables (in PWR environments considered) for training the Kohonen map [2,3]

C (wt%) Mn (wt%) Fe (wt%) S (wt%) P (wt%) Si (wt%) Cu (wt%) Ni (wt%) Cr (wt%)

Maximum 0.10 7.25 8.00 0.0150 0.006 1.00 0.500 76.0000 20.0
Minimum 0.07 0.22 3.00 0.0020 0.000 0.12 0.005 65.2650 15.0

Ti (wt%) Nb (wt%) Co (wt%) Mo (wt%) N (wt%) O (wt%)

Maximum 1.00 2.50 0.7500 0.0 0.0 0.0
Minimum 0.24 0.07 0.0058 0.0 0.0 0.0

Temperature
(�C)

Test time
(h)

Flow rate
(cc/min)

Pt ECP mV SHE at
289 �C

Metal ECP mV SHE at
289 �C

Conductivity
(lS/cm)

[O2] (ppb) R, Load
ratio

Maximum 320 2141 50.0 �440 �434 26 9 1.0000
Minimum 316 25 0.0 �706 �704 12 9 0.2600

Rise time
(s)

Down time
(s)

Hold time
(s)

Kmax

(MPa m^0.5)
DKmax

(MPa m^0.5)
Allowed Kmax

(MPa m^0.5)
Crack length (mm) (initial
6mm)

Weld Growth Rate,
m/s

Maximum 1000.00 500.00 3600 51.61 32.67 27.60 29.185 1.0000 7.54E–07
Minimum 0.25 0.25 0 19.40 0.00 19.10 5.993 0.0000 1.00E�14
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points were used (BWR and PWR environments, and Fe-based and
Ni-Based alloys).

A vector of size 30 is used to represent the alloy composition,
environment, and CGRs. The author used the vectors (size 30) to
train a Kohonen map. Once the map is trained, the vectors are clus-
tered by ‘similarities’. The CGRs in each map cell were plotted. The
trends adopted for the CGRs were compared to the trends of each
one of the component adopted by the same Kohonen map – of the
vectors (size 30).

1.3. Kohonen maps

Imagine a Kohonen map as a two-dimensional array (or layer)
of safe boxes. Each box or neuron can store a ‘treasure.’ The trea-
sures stored are vectors of any size (in our application, of size
30) containing the information from one experiment. Kohonen
maps belong to the generic Self-Organizing Maps (SOM) – defined
as part of the Neural Networks family. Neural Networks are part of
techniques used to mine data (data-mining). Kohonen network is
one of the most fascinating topics in the neural network field. Such
networks can learn to detect regularities and correlations in their
input and adapt their future responses according to that input.
The neurons or cells of competitive networks learn to recognize
groups of similar input vectors. Self-organizing maps learn to rec-
ognize groups of similar input vectors in such a way that neurons
physically near each other in the neuron layer respond to similar
input vectors [6]. Self-organizing maps (SOM) learn to classify in-
put vectors according to how they are grouped in the input space.
SOM neighboring neurons in the self-organizing map learn to rec-
ognize neighboring sections of the input space. Thus, self-organiz-
ing maps learn both the distribution and topology of the input
vectors on which they are trained. Given a two-dimensional map
or layer of neurons, each neuron is given to store a randomly gen-
erated vector of the same size of the vectors we want to cluster.
Each vector to be classified is ‘presented’ to the layer of neurons
and compared with the stored vector contained in each neuron.
The neuron that contains the vector that is most similar to the pre-
sented-to-the-net vector is declared ‘the winner,’ and the vector
stored and its neighbor neurons are updated to make the neighbor-
hood more similar to the vector just presented. In this way, the
neighbor’s neurons start to store vectors that are similar to its
neighbors. Consequently, after many presentations, neighboring
neurons will have learned vectors similar to each other. Scheme 1
show a hypothetical Kohonen layer formed by 9 � 7 cells or
neurons with each neuron storing a vector x of size n.

Once the full layer of neurons or cells is trained, the neurons
or cells that are similar cluster together, while vectors that are
different cluster apart. Matlab offers a tool box in which several



Scheme 1. Hypothetical Kohonen 9 � 7 map shows a winner neuron (3, 4) in pink
and the neighborhood around the winner neuron being updated with different
percentiles as color coded around the winner neuron.

Fig. 1. Log (CGR) mean value for each trained cell (box) in the 8 � 5 Kohonen map.
There is a higher CGR in cell (8,1) and lower CGR in cell (1,4). Note that when a
datum vector point had an unmeasured CGR (too small to be measured); we
assigned a value of 10�14 cm/s.
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functions are defined and ready to use. There are also excellent
public web sites developed for gene classification that offer sophis-
ticated Kohonen or SOM nets or engines. For example, in Matlab
functions can arrange the neurons in a grid, hexagonal, or random
topology. Distances between neurons are calculated from their
positions with a distance function. These topology and distance
functions are described in detail in Matlab or in the engine one
may choose to use.

The vectors are stored by ‘similarities’ and topologically dis-
tributed in the two-dimensional Kohonen maps (8 cells � 5 cells);
i.e., if two vectors are similar they will be stored in the same box;
if two vectors are very dissimilar they will be stored far away one
from the other. The trained map ‘adopts’ a mean value represent-
ing each one of the input vectors. A given vector is stored on the
box whose adopted mean values are closest to the inputting vec-
tor. Overlapping of range of values is desirable to obtain a good
result during the training. Accordingly, cells or boxes on the
Kohonen map will have a mean value and a small range for each
input of the vector stored. The overlapping, if it exists, is only on
the neighboring cells.

In this study, an 8 � 5 Kohonen map was trained using alloy
metal composition and type, parameters for PWR and BWR envi-
ronmental conditions, mechanical conditions imposed on the
samples, information on the origin of the samples, and measured
crack growth rate. A web-based, free-to-use engine was used.
Each experiment containing all the information was represented
by a long vector of size 30. The size of the vector indicates the
number of variables that describe an experiment; for example:
C, wt%, Fe, wt%, . . . , Kmax, DKmax, . . . , T, ECP, . . . , CGR. While the
Kohonen map is trained with the vectors for which complete
data are available, the vectors are ‘stored’ in one of the 40 Koho-
nen cells or neurons (8 � 5 = 40). The position where each vector
is stored does not have, per se, any meaning; what have meaning
are how far apart the cells in the Kohonen map array are. When
data that are incomplete are added to the list of vectors to be
stored, that incomplete vector will be stored on the box that con-
tains the vectors that are closer or more similar to the incom-
plete vector. In order to give more importance to the crack
growth rate over any other variable in the vector, the author
used what is called functional links. Functional links are addi-
tional inputs formed by manipulating the input considered most
important to represent the classification; that is, we add inputs
to each vector, information about CGR, that contain loga-
rithm(CGR), CGRpower (power is any number as 2, 3, 4, . . . ,1/2,
1/3,. . .).
2. Results

Before we start to show and discuss the result, the author has to
keep this analysis in perspective:

(1) Results are good as the data vectors used are good.
(2) If the data used have variables that do not change, those

variables will not have an impact on the results. That will
not mean that variable is not important.

(3) As long we have data variability, – no matter how small is
that variability – the Kohonen map will learn the informa-
tion captured by that variable. All variables used were nor-
malized to it own maximum and minimum values;
accordingly, how large or how small those variables are does
not matter.

(4) Data sets collected were small for BWR and PWR separately.
(5) Some variables collected are difficult to measure (example

ECP); consequently, the results in the graphics are very noise
and they were discarded.

Keeping these constraints in mind we will review the results.

2.1. BWR conditions, Fe-based alloys

Because the data set used – BWR and Fe-based alloys – to per-
form the Kohonen map training was not large enough, the Kohonen
map was not well trained and the results appeared as noisy trends.
The noise appeared as a rough transition from the cells of high
CGRs to the cells of low CGRs.

Fig. 1 shows a three-dimensional map representation of the
‘average’ CGR of each one of the trained cells obtained in an
8 � 5 Kohonen map. Each cell (or neuron) stores several vectors;
each cell is ‘represented’ by an ‘average’ vector. Vectors with sim-
ilar values will store in the same cell, and the ‘average’ values are
the ones that are plotted. Each one of those ‘average’ vectors are of
size 30 (the same size of the input vectors used to train the Koho-
nen net). The logarithm (CGR) (an element of the vector of size 30
stored in each cell) is plotted versus the cell location in the Koho-
nen map. We see that for this trained Kohonen (each trained map
may give different results), the only general feature is that the
resultant map captures the vector information and vectors that
are different will be clustered apart, while vectors that are similar
will be clustered closer together in the Kohonen map. In Fig. 1, cell



Fig. 3. Down time mean value for each trained cell in the 8 � 5 Kohonen map;
higher CGR is in cell (8,1), lower CGR in cell (1,4).

Fig. 4. Hold time mean value for each trained cell (box) in the 8 � 5 Kohonen map;
higher CGR is in cell (8,1), lower CGR in cell (1,4).
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(8,1) store the vectors that have the highest CGR (average loga-
rithm (CGR, m/s) = �8), and the lowest CGR vectors are stored in
cell (1,4).

2.2. Influence of mechanical parameters

The experimental observations of the load ratio (R = Kmin/Kmax)
on the CGR –of stainless steel in BWR environments – in the open
literature [7] indicates that when R increased from 0.10 to 0.55, an
increase in CGR was observed. This was attributed to an extrinsic
effect in which crack closure was overcome. A further increase in
R from 0.70 to 0.80 did not produce significant enhancement in
the CGRs [7–10]. Similar results are observed in our Kohonen
map clustering analysis – SSs in BWR environments – the high
CGR corresponds to the low R values, and no increase in CGR is ob-
served at high load ratios (=Kmin/Kmax). Fig. 2 shows the load ratio
of the vectors stored in the different 8 � 5 Kohonen cells. As ob-
served experimentally, it is at small load ratios that we observe
the highest CGRs.

The experiments carried out by Argonne National Laboratory
were CGR experiments under fatigue loading conditions that
employed CT samples of SS steels (Table 1) with a given rise time,
hold time, and a down time. The frequency was defined as that ob-
tained upon the addition of all the times. Figs. 3–5 show the Koho-
nen cell average of the rise time, hold time and frequency. Note
that for this trained Kohonen map the highest CGRs were stored
in cell (8,1) and the lowest CGRs were stored in cell (1,4).

For crack with a large mouth-length/crack-length ratios, it is ex-
pected that at low applied mechanical load frequencies, the crack
will remain open a longer time and – if the ‘environmental’ regime
overruns the ‘mechanical’ regime – the CGR will be faster; high
down-times, high hold-times and low frequencies will cluster on
the Kohonen cell corresponding to the high CGRs. On the contrary,
if the ‘mechanical’ regime overruns the ‘environmental’ regime,
low down-times (Fig. 3), low hold-times (Fig. 4) and high frequen-
cies (Fig. 5) will cluster with the high crack growth rates (cell
(8,1)). The results, on SSs submerged in BWR environments, dem-
onstrate that the experiments were carried out under the ‘mechan-
ical’ regime; that is, it is the ‘mechanical’ regime that dominates
the experiments carried out rather than the ‘environmental’ re-
gimes. These results may explain the lack of correlation between
the ECP and CGRs observed in the data. Note in Fig. 5 that high fre-
quencies (0.8 Hz) correspond to higher CGRs while low frequencies
correspond to low CGRs in this analysis.
Fig. 2. Load ratio mean value for each trained cell (box) in the 8 � 5 Kohonen map.
Low load ratio corresponds to high CGRs (cell (8,1), which appears to indicate that
the SS has a different impact depending of the type of material, as was expected. If
the alloy types are classified by their CGR, a Kohonen cell contains an average of the
vectors stored in that box or cell.

Fig. 5. Frequency mean value of each trained cell (box) in the 8 � 5 Kohonen map.
High frequency corresponds to high CGRs.
Fig. 6 shows the stress intensity range (DKmax) distribution val-
ues in the Kohonen map. Larger DKmax correspond to map position
(8,1), where the highest CGR values are stored (Fig. 1). These re-
sults confirm that the data analyzed and collected on SS in BWRs



Fig. 6. Delta stress intensity factor (cyclic load; DK corresponds to the ‘load
amplitude’) value of each trained cell (box) in the 8 � 5 Kohonen map. High delta
stress intensity factor corresponds to high CGRs.

Fig. 7. Log (CGR) mean value for each trained cell (box) in the 8 � 5 Kohonen map;
higher CGR in cell (8,1), lower CGR in cell (8,4).

Fig. 8. Phosphorus wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. Low concentration of P corresponds to low CGRs (see Fig. 7).
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environments were collected under the ‘mechanical regime’ for
which the smaller CGRs are observed [4,5].

2.3. Influence of environmental parameters

The most important environmental parameter in stress corro-
sion cracking (SCC) is claimed to be the ECP [4]. Models have
shown that the sensitized Type 304 SS will suffer SCC only at ECPs
above some critical environmental assisted stress corrosion
cracking (ESCC). Macdonald’s model [4] showed that the CGR in
sensitized Type 304 SS at ECP > ESCC increases strongly with
increasing corrosion potential, probably due to an enhanced ability
of the external surfaces to consume a charge emanating from the
crack through the reduction of oxygen and hydrogen peroxide –
radiolysis products in nuclear reactors. For ECP > ESCC the curve
Log(CGR) versus ECP corresponds to the ‘electrochemical oxidation
(dissolution) of the crack tip’ regime. The statistical analysis of the
data used in this analysis – SSs on BWR environments- showed a
strong correlation between the ‘mechanical’ regime parameters
(Kmax, DKmax, and x) and the CGRs and a poor or non-existent cor-
relation between the parameters that are important to describe the
electrochemical or ‘environmental’ effects –as electrochemical po-
tential, temperature, and conductivity – and the CGRs. Probably,
this is one of the reasons why CGRs reported are smaller than
the CGR measured by Argonne National Laboratories (ANL) in
PWRs environments. The results obtained by analyzing the present
data reflect that the ‘mechanical’ regime is more important than
the ‘environmental’ regime. Noticed that the higher crack growth
rates measured (on the data used) were lower than 10�8 m/s;
which support the hypothesis that the experiment were run under
‘mechanical’ regimes [4].

Temperature results are not shown because the data did not
contained a variation on that variable; accordingly, the learning
from those variables is very insignificant.

It is important to understand that not finding relationship be-
tween a variable and CGRs does not mean that that variable is
not important, but it may mean that those variables were kept con-
stant over all the experimental data accumulated.

Based on this analysis it was concluded that these data are rep-
resentative mainly (if not entirely) of the ‘mechanical’ effect and
not the ‘environmental’ effect. The ECP data measured – on the me-
tal alloy and on a platinum reference electrode – do not show any
correlation with the CGRs measured. This may indicate that (a) the
ECP was measured incorrectly; or (b) the regime under which the
CGR was measured is overwhelmed by the ‘mechanical’ regime of
the measured CGRs, not showing any correlation between ECP and
CGRs.

2.4. PWR conditions, Ni-based alloys

The author analyzed the ANL data collected on nickel-based al-
loys under PWR environments. The composition of the alloys ana-
lyzed is listed in Table 2. Fig. 7 shows the results obtained on the
trained Kohonen map of the logarithm (CGR). The left front side
of the Kohonen map (cells (8,1) through (1,1)) stores the elements
with smaller crack growth rates, where the upper-right far side
(cell (8,5)) stores the vectors with the highest CGR.

Accordingly, if we plot each one of the inputs (not all inputs are
plotted) in the Kohonen map, the cells (8,1) through (1,1) in this
trained Kohonen map store the vectors (size 30) that are ‘benefi-
cial’ in order to keep a low CGR, while the vectors stored in cells
(8,5) through (1,5) are ‘detrimental’ to the metal (high CGRs).

2.5. Influence of alloy composition

We explore, for example, the role of minor alloy elements in the
nickel based alloys; as the effect of phosphorus (Fig. 8) in the alloys
used (A182, A82, A600), and find that in order to maintain low CGR
we should keep the amount of phosphorus low in the nickel-based
alloys.



Fig. 11. Nb weight percentile content has a small impact on CGRs for the nickel-
based alloys in PWR environments. Low concentrations of Nb correspond to high
CGRs.

74 M. Urquidi-Macdonald / Journal of Nuclear Materials 379 (2008) 68–79
Similar inspections on the Kohonen map can be performed for
each of the alloy’s elements. We find (not shown) that increasing
the iron content as a minor alloy element increases the CGRs;
increasing the nickel content (or lowering the total weight of the
minor alloy elements such on the Ni-based alloys) increases the
CGR (Fig. 9). In other words, some of the minor alloys elements
in the nickel alloys are beneficial.

Fig. 10 shows that Silicon has a very small or negligible impact
(on the weight percentile explored) as believed by other authors
[11].

Niobium (Nb) has also a small impact on the CGR. Fig. 11 indi-
cates that low concentrations of Nb correspond to high CGRs.

2.6. Influence of the environment

Examples of the environmental impacts on the CGR are shown
in Figs. 12 and 13. Fig. 12 shows that high electrolyte flow rates
correspond to high CGRs. It is reported in the literature [12] that
under the ‘environmental’ regime (usually observed in BWRs) an
increase in the flow rate increases the CGR because it increases
the cathodic reaction area that occurs at the crack mouth and out-
side of the crack mouth side. It is important to mention that this
last phrase is applicable for cracks for with the ratio between the
crack’s-mouth-dimension/crack-length� 1. Thin and long cracks
are the most dangerous on nuclear reactors than large open cavi-
Fig. 10. Si weight percentile content has a negligible impact on CGRs for the nickel-
based alloys in PWR environments.

Fig. 9. Ni wt% mean value for each trained cell (box) in the 8 � 5 Kohonen map.
High nickel content – corresponding to low content of minor alloy elements –
corresponds to high CGRs.

Fig. 12. Flow rate mean value for each trained cell (box) in the 8 � 5 Kohonen map.
High flow rates correspond to high CGRs.

Fig. 13. Down time mean value for each trained cell (box) in the 8 � 5 Kohonen
map. High down time corresponds to high CGRs.
ties; because they are much difficult to detect. Large mouth cracks
(as large cavities) usually develop at low flow rates. For the large
mouth cracks, low flow velocities keep the aggressive environ-
ments in the crack tips; while high electrolyte floe velocities ‘wash
out’ the crack tips becoming beneficial to the CGRs of those cracks.
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In this paper, when we refer to the CGRs we refer to cracks that
have a very high slender ratio (small mouth compared to the crack
length).

2.7. Influence of the mechanical loads

Fig. 13 shows the mean down time of the Kohonen cells versus
position on the two-dimension Kohonen map. The down time and
rise time (the latter not shown) are observed to increase the CGRs
when the system is in the ‘environmental’ regime, and the opposite
is observed when the CGR is mechanically controlled [4,5,13].

The results (Figs. 12 and 13) obtained under PWR conditions on
the nickel-based alloys indicate that the CGR data measured have a
stronger ‘environmental’ regime component than the data col-
lected for BWR conditions on Fe-based alloys.

2.8. Clustering using all data available (BWR and Fe-based, PWR and
Ni-based alloys)

Because not enough data were available when the data were
separated in Fe-based BWR environments and in nickel-based
PWR environments, the two data sets were combined and analyzed
as a whole. The results are discussed herein.

It is interesting to notice that the two previous analysis indi-
cated that the data measured by ANL in BWR conditions was gen-
erated with a dominant ‘mechanical’ regime component; while the
results obtained with the data measured in PWR conditions indi-
cates that the ‘environmental’ regime was more important than
the ‘mechanical environment. Those results are supported by the
high CGRs measures in PWR environment when compared to the
CGRs obtained in BWR environment (see Tables 3 and 4).

It is well understood that the mechanisms that yield to CGRs in
BWR environment are very different to the mechanisms that yield
to CGRs in PWR environments. However, we are not sorting out
here the mechanism causing CGR. We are solely mining the data
expecting to learn something that we do not know and that is
embodied on the measured data. By analyzing the two data sets to-
gether we loose the capability to differentiate the root of possible
important mechanism that set the differences on CGRs when dif-
ferent metal alloys and environments are used. We hope to learn
if they are minor alloy element common to both Fe- and Ni-based
alloys that can be considered beneficial or detrimental to CGRs.

Fig. 14 shows the results obtained on the trained Kohonen
map of the logarithm of the crack growth rate. The left front side
of the Kohonen map – about cell (8,1) – stores the elements with
smaller crack growth rates, while the upper-right far side – about
Fig. 14. Log (CGR) mean value for each trained cell (box) in the 8 � 5 Kohonen map.
Lower CGR is found in cell (8,1), higher CGR in cell (1,5).
cell (1,5) – stores the vectors with the highest CGRs. Accordingly,
if we now plot each one of the inputs (not all inputs are plotted)
in the Kohonen map, the same cells will indicate what is benefi-
cial or what is detrimental to the CGR.

2.9. Minor alloy element impact on CGR

The impact of each of the minor alloys in the Ni-based and Fe-
based metal alloys studied was reviewed. It is important to
remember that some of the elements contained in the Ni-based
alloys are not contained in the Fe-based alloys, and vice versa.
Once the Kohonen map is trained, each cell assumes an ‘average’
vector, with each element of that ‘average’ vector representing
each cell or neuron value storage vector. The vectors stored have
exactly the same dimensions of the input vectors used in the
training. Notice that the same map stores the high CGRs in cell
(1,5) and the low CGRs in cell (8,1). Not surprisingly, as we will
observe in the following figures, Kohonen cell (8,1) store SS alloys
used in BWR environments while cell (1,5) store vectors corre-
sponding to the Nickel alloys in PWR environments. Noticed that
not all minor alloy elements analyzed are shown to avoid a very
long paper.

Figs. 15 and 16 show the concentration of the Fe contents and
the nickel contents of the vectors stored in the Kohonen cells. From
these two figures it is clear that the Fe-based alloys are stored in
the cells that contain low CGRs, while the nickel-based alloys are
stored in the cells corresponding to the high CGRs. As mentioned
above (BWR and PWR analysis), the data collected on the Fe-based
alloys in BWR environments correspond to the ‘mechanical’ re-
gime; the nickel-based alloys in the PWR environments exhibited
a more prominent ‘environmental’ component. The ECP of the
experiments carried out on the Fe-based samples in BWR environ-
ments corresponds to the range of values found in the ‘mechanical’
regime, while for the Ni-based alloys in the PWR environments the
ECP corresponds to the ‘environmental’ controlled ECPs. These two
previous observations are confirmed in the results depicted in Figs.
15 and 16. The Fe-based BWR environment samples correspond to
lower CGRs cells (cell (8,1); while Ni-based PWR condition tested
samples are stored on the Kohonen cell (1,5).

Once we identified that the high CGR stored in the Kohonen
map are vectors corresponding to PWRs environments (dominated
by ‘environmental’ regimes as indicated in the PWR data analysis
in the previous section); and the low CGR correspond to vectors
representing BWR environments under ‘mechanical’ regime (as
indicated in the previous section on BWRs results) we proceed to
investigate the general effect of the minor alloy elements.
Fig. 15. Iron wt% mean value for each trained cell (box) in the 8 � 5 Kohonen map.
The high CGRs (cell (1,5) correspond to the Ni-based alloys in PWR environments.



Fig. 16. Nickel wt% mean values for each trained cell (box) in the 8 � 5 Kohonen
map. The high CGRs (cell (1,5) correspond to the Ni-based alloys in PWR
environments. These results are consistent with the results presented in Fig. 15.

Fig. 18. Sulfur wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. If sulfur content is less than 0.008 wt%, the crack growth rates are slower.

Fig. 19. Carbon wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. If carbon wt% is about 0.04, the CGRs are smaller.
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Fig. 17 shows that the phosphorus content. The Kohonen map
shows lower CGR for the Fe-based alloys with a highest [P] concen-
tration, and in the Kohonen cell with the lowest CGRs, the Ni-based
alloys show a lowest [P] concentration. These results may indicate
that higher [P] concentrations were found on the Fe-based alloys
and lower [P] concentrations were found on the Ni-based alloys.

Sulfur is presented in Fe-based and Ni-based alloys in concen-
trations of 0.007 < [S, wt%] < 0.016; and 0.002 < [S, wt%] < 0.15,
respectively. Lower concentrations of [S] on Fe-alloys yield lower
CGRs; higher concentrations of [S] on Ni-alloys yield to higher
CGRs as shown in Fig. 18.

Similar trends are observed in Fig. 19 where the carbon wt%
concentrations are clustered in the Kohonen map. Fe-based alloys
that cluster on cell (8,1) have concentrations oscillating between
0.013 < [C, wt%] < 0.07; the best performing Fe-based alloys are
alloys containing [C] = 0.04%, no more, no less. Ni-based alloy
concentrations have a total concentration oscillating between
0.07 < [C, wt%] < 0.1. Concentrations of 0.04 wt% carbon appear to
be optimal on the Fe-based alloys, while larger concentrations
[C] = 0.09 wt%) on the Ni-based alloys are detrimental.

Fe-alloys do not contain copper. The Ni-based alloys with lower
[Cu, wt%] cluster away from cell (1,5) where the highest CGRs
occur (0.005 < [Cu, wt%] < 0.5 are the concentrations on the alloy
tested). Accordingly, a high concentration of copper ([Cu] =
Fig. 17. Phosphorous mean value for each trained cell (box) in the 8 � 5 Kohonen
map. If P = 0.02 wt%, the CGRs are slower. Fe-based alloys clustered in cells around
(8,1) correspond to the best performing Fe-based alloys (lower CGRs).
0.33 wt%) in Ni-based alloys is detrimental to CGR, as shown in
Fig. 20.

Chromium concentration varies between 15 < [Cr, wt%] < 20 in
the Ni-based alloys, while concentrations of 18.23 < [Cr,
Fig. 20. Copper wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. Copper, a minor component of the alloy, was present in only a few of the
alloys tested: A182, A82, and A600.



Fig. 23. Manganese wt% mean value for each trained cell (box) in the 8 � 5
Kohonen map. If Manganese, a minor alloy component, has wt% < 2, CGR is slower.
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wt%] < 18.62 are present in the Fe-based alloys. Chromium content
on the cluster with lowest CGR corresponding to the Fe-based
alloys with concentration averages 18.55%; we can conclude that
these high Cr concentrations on the Fe-based alloys are beneficial.
The worse CGRs are on the Kohonen cell with the Ni-based alloys
with lower chromium concentrations; we can conclude that higher
chromium concentrations are beneficial in Fe- and Ni-based alloys
when in the presence of BWR and PWR environments, as shown in
Fig. 21.

Silicon, a minor alloy component, appears not to have an impact
on increasing or decreasing the CGR in the range of concentration
used (0.4–0.8 wt%) in the Fe-based and Ni-based alloys, as shown
in Fig. 22.

The Fe-based alloys studied had weight percentile concentra-
tions of Manganese in the range of 1.84 < [Mn, wt%] < 1.9, and for
the Ni-based alloy the concentrations were between 0.22 < [Mn,
wt%] < 7.25. The Fe-based alloys clustered on the cell with the low-
est CGRs are an example with a higher Mn content. The vectors
clustered in the cell with the highest CGRs correspond to the clus-
ter containing Ni-based alloys with the largest concentration of
Mn. Accordingly, while concentrations of 1.90 Mn wt% are benefi-
cial in Fe-based alloys, large concentrations (average �4 wt%) of
Mn on Ni-based alloys are not beneficial, as shown in Fig. 23.

The Fe-based alloys contained molybdenum, N, and O as minor
alloy elements in concentrations between 0.31 < [Mo, wt%] < 0.51,
0.064 < [N, wt%] < 0.084, and 0.01 < [O, wt%] < 0.014. The average
Fig. 21. Chromium wt% mean value for each trained cell (box) in the Kohonen 8 � 5
map. Higher chromium content is beneficial to slow CGR.

Fig. 22. Silicon wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map.
concentrations of the Mo, N, and O of the vectors stored in the
Kohonen cell with the lowest CGRs are about 0.4, 0.75, and
0.013, respectively, as shown in through Figs. 24–26. Indicating
that the higher concentration of O and N as a minor alloy elements,
and intermediate values of the concentration of Mo are beneficial
in CGRs for the Fe-based alloys in contact with a BWR environ-
Fig. 24. Molybdenum wt% mean value for each trained cell (box) in the 8 � 5
Kohonen map. Contents of 0.4 wt% of cobalt are favorable to decrease CGR.

Fig. 25. Nitrogen mean value for each trained cell (box) in the 8 � 5 Kohonen map.
About 0.07 wt% traces of nitrogen are favorable to decrease CGR.



Fig. 28. Niobium wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. Niobium traces in Fe- and Ni-based alloys used in nuclear environments are
detrimental to crack growth under fatigue conditions.

Fig. 29. Cobalt wt% mean value for each trained cell (box) in the 8 � 5 Kohonen
map. Cobalt traces in Fe- and Ni-based alloys used in nuclear environments are
detrimental to crack growth under fatigue conditions, and to the development of
‘radiations fields’ (not addressed in this paper).

Fig. 26. Atomic oxygen wt% mean value for each trained cell (box) in the 8 � 5
Kohonen map. About 0.013 wt% traces of nitrogen are favorable to decrease CGR.
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ment. Ni-based alloys do not contain Mo, N, or O as minor alloy
elements.

Ni-based alloys contain Ti, Nb, and Co in the ranges of 0.24 < [Ti,
wt%] < 1.00, 0.07 < [Nb, wt%] < 2.50, 0.0058 < [Co, wt%] < 0.75 in
the alloys studied in a PWR environment. Figs. 27–29 present the
averages values of Ti, Ni, and Co in the Kohonen cells that show
the highest CGRs. Those values are �0.68, 1, 45, 0.38 wt% for the
Ti, Nb, and Co, respectively (as shown in Figs. 27–29). Accordingly,
high concentrations of Ti and intermediate to high concentrations
of Nb and Co are detrimental for the Ni-based alloys.

After exploring the impact of the alloy compositions on the CGR,
the author directed her attention to the environmental parameters
and the mechanical parameters that were imposed on the pre-
cracked sample, exploring the effects of conductivity and temper-
ature on the CGRs.

2.10. Environment influence

It is expected that conductivity will have a similar impact in
BWRs and PWRs, in Fe-based alloys and in Ni-based alloys. The ef-
fect of conductivity was explored when the two data sets were
used together to train a Kohonen map. Fig. 30 shows the effect of
conductivity on CGRs. As indicated by Macdonald [4,12,14], for
CGRs dominated by the ‘environmental’ regime, it is expected that
the CGRs increases with electrolyte conductivity; because, the
throwing power of the current coming out of the crack tip (due
Fig. 27. Titanium contains % mean value for each trained cell (box) in the 8 � 5
Kohonen map. Titanium contained in Fe-based and Ni-based alloys increases the
CGR.

Fig. 30. Conductivity mean value for each trained cell (box) in the 8 � 5 Kohonen
map. The environmental component of CGR is very dependent on the water
conductivity. The Kohonen map captures this effect.
to the tip dissolution (oxidation)) encounters a larger area outside
of the crack to be consumed. Fig. 30 supports this thesis. The reader
is reminded that this result is obtained completely independently
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of the conclusion reached by Macdonald by using a pure determin-
istic model to predict that CGRs – of thin cracks – increases with
the flow rate of the electrolyte outside the crack [5,12]. This is
the beauty of using data-mining techniques and comparing the re-
sults to existing theories.

3. Conclusion and recommendations

Stress corrosion cracking is one of the problems that can be pre-
sented in nuclear waste related system if metallic containers in
wet environments are used. This paper presents, by first time, a
methodology that is commonly used in data-mining techniques,
and shows that this technique can be used successfully to establish
relationship between important variables and crack grow rates. It
is important to remember that the relationship discovered in be-
tween variables and stress corrosion cracking are not inclusive;
i.e. they depend on the quality of the data measured. Dependence
of stress corrosion cracking and other important variables may ex-
ist and they are not shown or discussed; because the data re-
mained constant for those variables (for example, temperature,
others).

It has been well established [4,5] that there is a close relation-
ship between CGR and temperature, oxygen and hydrogen concen-
trations, and electrochemical potential. The data used in this work,
for BWR environments, do not show any correlation between the
CGR and those parameters (temperature, [O2], and ECP). The statis-
tical analysis performed on the data showed a strong correlation
between the ‘mechanical’ variables (Kmax, DKmax, and x) and the
CGR; and a poor or non-existent correlation between the ECP and
the electrolyte conductivity on the Fe-based alloys tested in BWR
environments. The author concludes that these data are represen-
tative mainly (if not entirely) of the ‘mechanical’ regime and not of
the ‘environmental’ or hydrogen ‘embrittlement’ regime.

When the Ni-based alloys in PWR environments data were
mined, the results on the CGR obtained on the Kohonen clustering
showed a lesser dependency on the ‘mechanical’ regime and a
small dependency – or correlation – with ‘environmental’ vari-
ables, indicating that the data were collected in the transitional
regime from ‘mechanical’ regime to ‘environmental’ regime.

This study enabled, through mining of the measured data, the
gathering of information related to the regime under which the
data were collected. This is very important, because it is essential
that we be aware of prediction limitations, make extrapolations,
and draw conclusions based on data that accurately represent
the operational range of nuclear reactors. It is important to collect
properly measured data in a wide, well-controlled-electrochemi-
cal-potential range that covers the phenomena that are observed
in light water reactors.

This study also explores the impact of each one of the variables
(alloy composition and the environment) on the CGRs. The author
is not aware of any similar data mining techniques applied to nu-
clear reactors. The use of a similar methodology on a more general
and larger data base is highly recommended.
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